Semi-supervised Interactive Unmixing for Hyperspectral Image Analysis

نویسندگان

  • Sheng Zou
  • Yi Shang
  • Chao Chen
  • Hao Sun
چکیده

In the past several decades, hyperspectral imaging has drawn a lot of attention in the field of remote sensing. Yet, due to low spatial resolutions of hyperspectral imagers, often the response from more than one surface material can be found in some hyperspectral pixels. These pixels are called mixed pixels. Mixed pixels bring challenges to traditional pixel-level applications, such as identification and detection of ground targets [1, 2]. To address these challenges, hyperspectral unmixing is often an important step during analysis of hyperspectral imagery. Hyperspectral unmixing is the task of decomposing each pixel into a set of pure material signatures (called endmembers) with the corresponding proportions of each material found in each pixel. In this thesis, novel hyperspectral unmixing approaches are proposed that leverage interactive labeling and semi-supervised approaches to improve unmixing results. Hyperspectral unmixing is conducted using an unsupervised approach. Fully supervised hyperspectral unmixing approaches are generally infeasible as the number of pixels in a hyperspectral image is often in the tensor hundreds-of-thousands and obtaining accurate pixel-level labels is prohibitively expensive or simply impossible. Thus, many hyperspectral unmixing algorithms in literature only use the hyperspectral image. However, there are often other ancillary information regarding the image available that could be used to assist the unmixing process and do not add an infeasible amount of labeling tasks. Motivated by this, novel semi-supervised hyperspectral unmixing techniques are proposed. The proposed semi-supervised approaches allow supervision over hyperspectral unmixing to improve the unmixing performance but do not require complete pixel-level accurate labels for a training data set. For the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Semi-Supervised Classification Strategy Combining Active Learning and Spectral Unmixing of Hyperspectral Data

Hyperspectral remote sensing allows for the detailed analysis of the surface of the Earth by providing high-dimensional images with hundreds of spectral bands. Hyperspectral image classification plays a significant role in hyperspectral image analysis and has been a very active research area in the last few years. In the context of hyperspectral image classification, supervised techniques (whic...

متن کامل

Hyperspectral Unmixing with Endmember Variability using Semi-supervised Partial Membership Latent Dirichlet Allocation

A semi-supervised Partial Membership Latent Dirichlet Allocation approach is developed for hyperspectral unmixing and endmember estimation while accounting for spectral variability and spatial information. Partial Membership Latent Dirichlet Allocation is an effective approach for spectral unmixing while representing spectral variability and leveraging spatial information. In this work, we exte...

متن کامل

Sparse Hyperspectral Unmixing

Given a set of mixed spectral vectors, spectral mixture analysis (or spectral unmixing) aims at estimating the number of reference materials, also called endmembers, their spectral signatures, and their fractional abundances. A semi-supervised approach to deal with the linear spectral unmixing problem consists in assuming that the observed spectral vectors are linear combinations of a small num...

متن کامل

کاهش ابعاد داده‌های ابرطیفی به منظور افزایش جدایی‌پذیری کلاس‌ها و حفظ ساختار داده

Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...

متن کامل

جداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA

Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016